## Relativity, The Binomial Theorem, and Pythagorean Triples

"Flamenco Chuck" Keyser

02/21/2017, 10:02 AM PST

Latest Update: 02/21/2017, 8:41 AM PST

Relativity, The Binomial Theorem, and Pythagorean Triples

From the decomposition of  $\beta$  into its space-time components  $\beta = \frac{v}{c} = \left(\frac{x_v}{t_v} \frac{t_c}{x_c}\right)$ , it is clear that the "time dilation" equation  $\tau' = \tau \gamma$  is a a relation of linear metric density  $\gamma$ , where the metric "mass" is represented by  $m = c\tau$  where  $\tau = \frac{x}{c}$  and  $x_v = x_c$  in the decomposition, so that  $\tau' = \tau \gamma$ .

The metric density  $\gamma$  (the variation in "mass" per unit length, where  $m' = c\tau' = (c\tau)\gamma = m_0\gamma$ ) can be plotted against  $\beta$  and compared with the plot of integers for Pythagorean Triples,



where  $\alpha^2 = \gamma^2 + \beta^2$  and  $c^2 = a^2 + b^2$  For Special Relativity, where  $\beta = \frac{v}{c}$ , and c is taken to be an invariant, the relativistic unit circle restricts  $\gamma = 1$ ,  $\beta = 0$  to a single dimension; however, if c is allowed to vary, then the metric density  $\gamma = \frac{1}{\sqrt{1 - (\frac{v}{c})^2}} = \frac{1}{\sqrt{1 - (\beta)^2}}$  changes with c as well, so the

plot represents a change in mass density with respect to  $\beta$  with a change in c - i.e., an "acceleration" with respect to a constant v.

Note that in the plot  $\beta \perp \gamma$ , so that  $\vec{\beta} \cdot \vec{\gamma} = 0$  and  $\begin{vmatrix} \beta & 0 \\ 0 & \gamma \end{vmatrix} \rightarrow 2\gamma\beta(\vec{0})$  This is the condition that the "perturbation" is independent of  $\gamma$ , so that  $\beta$  is independent of the  $\beta_0$  of the relativistic unit circle

 $(\gamma = 1)$  as a change in in the unit density from the formerly "final" condition where *c* is invariant. (This is also the case with the Lorentz Transform).

Thus the new  $\beta$  is associated with a second orthogonal dimension as a linear acceleration of the original metric.

If "Energy" is identified with area, the area of each triangle in the circle is equal to

 $E^{q}_{\ \gamma\beta} = \sqrt{\left(\frac{1}{2}\gamma\beta\right)^{2}} = \frac{1}{2}|\gamma\beta| \text{ , so the total energy due to the "interaction" represented by } |\gamma\beta| \text{ in each}$ quadrant is  $E_{\gamma\beta} = 4\sqrt{\left(\frac{1}{2}\gamma\beta\right)^{2}} = 4\left(\frac{1}{2}|\gamma\beta|\right) = 2|\gamma\beta|$ 

The total Energy of the system can then be represented by the individual energy due to the existence of each dimension plus the "interaction" energy  $2|\gamma\beta|$ :

 $E = \gamma^2 + \beta^2 + 2|\gamma\beta|$  However, in the case of the "linear" acceleration, there is no "interaction" between  $\gamma$  and  $\beta$ , since  $\gamma \perp \beta$ , so  $\vec{\beta} \cdot \vec{\gamma} = 0$ 

The same is true of Pythagorean Triples for independent integers in the space (a,b), since  $\vec{a} \cdot \vec{b} = 0$ , which results in the equation  $c^2 = a^2 + b^2$ 

This can then be compared with the Binomial Theorem, where  $c^2 = a^2 + b^2 + 2ab$  (and  $\psi^2 = \gamma^2 + \beta^2 + 2\beta\gamma$ ) where the interaction energy is independent of the non-perturbed system so that  $c^2 = a^2 + b^2$  (no multiplicative interaction between integers) and  $\psi^2 = \gamma^2 + \beta^2$ , respectively.

If the circle is distorted:



there will be interaction; in each case, however, the area of the triangle to the point  $(\gamma', \beta')$  or (a, b) relative to the  $\gamma$  or a axis will now be  $A_{\gamma'\beta'} = \frac{1}{2}\gamma'\beta'$  or  $A = \frac{1}{2}a'b'$ , so the total energy will coincide with the Binomial Theorem for  $(\gamma', \beta')$  and (a', b') where  $\overline{\gamma'}$  and  $\overline{\beta'}$  (and  $\overline{a}$  and  $\overline{b}$ ) are not

perpendicular, (i.e., (c', a', b') is not a Pythagorean Triple), so that  $(c')^2 = (a)^2 + (b)^2 + 2(a'b')$ where 2a'b' = rem(a, b, n), a' and b' positive integers.

Thus a' and b' represent a "distortion" of the Pythagorean Circle from (a,b).

The same is true for  $\overrightarrow{\gamma'}$  and  $\overrightarrow{\beta'}$ , where  $(\psi')^2 = \gamma^2 + \beta^2 + 2\gamma'\beta'$ 

In particular, note that c' cannot be an integer (since c included all possible integers in the cases of Pythagorean triples), and similarly for  $\psi'$ .

It is clear that n = 2 represents the number of dimensions in the analysis, and the "interaction" product represents an external interaction to the unperturbed systems  $(\gamma, \beta)$  and (a,b). For the case n = 2, the perturbation can be eliminated by the expression  $(\gamma'+i\beta')(\gamma'-i\beta')=(\gamma')^2+(\beta')^2$  where the "imaginary" interaction  $i\gamma\beta$  is "added" and "subtracted" simultaneously from the system (effectively "morphing" the distorted diagram back into a circle). Note that the area  $2\gamma\beta$  is independent of rotation for a given angle  $\theta$  in the case of an ellipse, corresponding to Kepler's law.

For the case of higher dimensions n > 2 for the Binomial Theorem (positive definite energies, or bosons), it is impossible to eliminate interactions by the complex number relation, since the terms in rem(a,b,n) > 0 always in the relation  $(c')^n = (a')^n + (b')^n + rem(a',b',n)$  where a',b', and c' do not form a Pythagorean Triple.

For the Pythagorean Triple, c = a+b means that  $c^2 = a^2 + b^2$  where the left and right hand sides of the equality refer to the same unique integer without interaction between a and b, which for positive integers, can only be accomplished by adding and subtracting an imaginary interaction in the case of  $c^2 = a^2 + b^2 = a^2 + b^2 + iab - iab$ ; otherwise,  $c'^2 = (a'+b')^2 = a'^2 + b'^2 + 2a'b'$ , which now includes the interactions. The latter equation can then be easily extended to the Binomial Expansion  $(c')^n = (a')^n + (b')^n + rem(a',b',n)$ , where c' cannot be an integer, since rem(a',b',n) > 0 for positive integers, thus proving Fermat's Theorem.

In the case of General Relativity, the Binomial Theorem means that for a linear change in the value of c, the equation  $(\psi')^n = (\gamma')^n + (\beta')^n + rem(\gamma, \beta, n)$  implies that  $\psi'$  cannot be an integer (even in the case of n = 2 for  $(\psi')^2 = (\gamma')^2 + (\beta')^2 + 2\gamma'\beta'$  if there is an interaction between  $\gamma'$  and  $\beta'$ 

If  $\gamma$  represents the energy due to electromagnetism and  $\beta'$  represents an interaction due to gravity, the equation becomes  $(\psi')^2 = (\gamma)^2 + (\beta')^2 + 2\gamma\beta'$  where the components  $2\gamma\beta'$  are the twodimensional components of "gravitational" interaction. If  $\beta'$  represents a change in c, then this "gravitation" refers to "light-on-light" interaction – in QFT, a change in the value of Planck's constant). In any case, for a linear change in c, for powers of n, the interaction elements in  $rem(\gamma, b', n)$  ensure that  $\psi'$  cannot be an integer, and correspond to the elements of the Jacobian of the metric tensor in the General Theory of Relativity, where  $\gamma$  represents electromagnetism at the "zero point" energy in the parking lot on earth at a given value of c ("temperature"), and  $\beta$ ' refers to a change in temperature, whatever the interpretation (nightfall, gravity, observed non-circular orbit around the Sun, etc.).

In particular, the energy of the metric tensor cannot be an integer if there are interactions between its basis vectors for  $n \ge 2$ 

There is much more to this story, but I don't have space to write it here... 🙂