Relativity, The Binomial Theorem, and Pythagorean Triples

"Flamenco Chuck" Keyser
02/21/2017, 10:02 AM PST

Latest Update: 02/21/2017, 8:41 AM PST
Relativity, The Binomial Theorem, and Pythagorean Triples
From the decomposition of β into its space-time components $\beta=\frac{v}{c}=\left(\frac{x_{v}}{t_{v}} \frac{t_{c}}{x_{c}}\right)$, it is clear that the "time dilation" equation $\tau^{\prime}=\tau \gamma$ is a a relation of linear metric density γ, where the metric "mass" is represented by $m=c \tau$ where $\tau=\frac{x}{c}$ and $x_{v}=x_{c}$ in the decomposition, so that $\tau^{\prime}=\tau \gamma$.

The metric density γ (the variation in "mass" per unit length, where $m^{\prime}=c \tau^{\prime}=(c \tau) \gamma=m_{0} \gamma$) can be plotted against β and compared with the plot of integers for Pythagorean Triples,

where $\alpha^{2}=\gamma^{2}+\beta^{2}$ and $c^{2}=a^{2}+b^{2}$ For Special Relativity, where $\beta=\frac{v}{c}$, and c is taken to be an invariant, the relativistic unit circle restricts $\gamma=1, \beta=0$ to a single dimension; however, if c is allowed to vary, then the metric density $\gamma=\frac{1}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}=\frac{1}{\sqrt{1-(\beta)^{2}}}$ changes with c as well, so the plot represents a change in mass density with respect to β with a change in c-i.e., an "acceleration" with respect to a constant v.

Note that in the plot $\beta \perp \gamma$, so that $\vec{\beta} \cdot \vec{\gamma}=0$ and $\left|\begin{array}{ll}\beta & 0 \\ 0 & \gamma\end{array}\right| \rightarrow 2 \gamma \beta(\overrightarrow{0})$ This is the condition that the "perturbation" is independent of γ, so that β is independent of the β_{0} of the relativistic unit circle ($\gamma=1$) as a change in in the unit density from the formerly "final" condition where c is invariant. (This is also the case with the Lorentz Transform).

Thus the new β is associated with a second orthogonal dimension as a linear acceleration of the original metric.

If "Energy" is identified with area, the area of each triangle in the circle is equal to
$E^{q}{ }_{\gamma \beta}=\sqrt{\left(\frac{1}{2} \gamma \beta\right)^{2}}=\frac{1}{2}|\gamma \beta|$, so the total energy due to the "interaction" represented by $|\gamma \beta|$ in each
quadrant is $E_{\gamma \beta}=4 \sqrt{\left(\frac{1}{2} \gamma \beta\right)^{2}}=4\left(\frac{1}{2}|\gamma \beta|\right)=2|\gamma \beta|$
The total Energy of the system can then be represented by the individual energy due to the existence of each dimension plus the "interaction" energy $2|\gamma \beta|$:
$E=\gamma^{2}+\beta^{2}+2|\gamma \beta|$ However, in the case of the "linear" acceleration, there is no "interaction"
between γ and β, since $\gamma \perp \beta$, so $\vec{\beta} \cdot \vec{\gamma}=0$
The same is true of Pythagorean Triples for independent integers in the space (a, b), since $\vec{a} \cdot \vec{b}=0$, which results in the equation $c^{2}=a^{2}+b^{2}$

This can then be compared with the Binomial Theorem, where $c^{2}=a^{2}+b^{2}+2 a b$ (and $\psi^{2}=\gamma^{2}+\beta^{2}+2 \beta \gamma$) where the interaction energy is independent of the non-perturbed system so that $c^{2}=a^{2}+b^{2}$ (no multiplicative interaction between integers) and $\psi^{2}=\gamma^{2}+\beta^{2}$, respectively.

If the circle is distorted:

there will be interaction; in each case, however, the area of the triangle to the point $\left(\gamma^{\prime}, \beta^{\prime}\right)$ or (a, b) relative to the γ or a axis will now be $A_{\gamma^{\prime} \beta^{\prime}}=\frac{1}{2} \gamma^{\prime} \beta^{\prime}$ or $A=\frac{1}{2} a^{\prime} b^{\prime}$, so the total energy will coincide with the Binomial Theorem for $\left(\gamma^{\prime}, \beta^{\prime}\right)$ and $\left(a^{\prime}, b^{\prime}\right)$ where $\overrightarrow{\gamma^{\prime}}$ and $\overrightarrow{\beta^{\prime}}$ (and \vec{a} and \vec{b}) are not
perpendicular, (i.e., $\left(c^{\prime}, a^{\prime}, b^{\prime}\right)$ is not a Pythagorean Triple), so that $\left(c^{\prime}\right)^{2}=(a)^{2}+(b)^{2}+2\left(a^{\prime} b^{\prime}\right)$ where $2 a^{\prime} b^{\prime}=\operatorname{rem}(a, b, n), a^{\prime}$ and b^{\prime} positive integers.

Thus a^{\prime} and b^{\prime} represent a "distortion" of the Pythagorean Circle from (a, b).
The same is true for $\overrightarrow{\gamma^{\prime}}$ and $\overrightarrow{\beta^{\prime}}$, where $\left(\psi^{\prime}\right)^{2}=\gamma^{2}+\beta^{2}+2 \gamma^{\prime} \beta^{\prime}$
In particular, note that c^{\prime} cannot be an integer (since c included all possible integers in the cases of Pythagorean triples), and similarly for ψ^{\prime}.

It is clear that $n=2$ represents the number of dimensions in the analysis, and the "interaction" product represents an external interaction to the unperturbed systems (γ, β) and (a, b). For the case $n=2$, the perturbation can be eliminated by the expression $\left(\gamma^{\prime}+i \beta^{\prime}\right)\left(\gamma^{\prime}-i \beta^{\prime}\right)=\left(\gamma^{\prime}\right)^{2}+\left(\beta^{\prime}\right)^{2}$ where the "imaginary" interaction $i \gamma \beta$ is "added" and "subtracted" simultaneously from the system (effectively "morphing" the distorted diagram back into a circle). Note that the area $2 \gamma \beta$ is independent of rotation for a given angle θ in the case of an ellipse, corresponding to Kepler's law.

For the case of higher dimensions $n>2$ for the Binomial Theorem (positive definite energies, or bosons), it is impossible to eliminate interactions by the complex number relation, since the terms in $\operatorname{rem}(a, b, n)>0$ always in the relation $\left(c^{\prime}\right)^{n}=\left(a^{\prime}\right)^{n}+\left(b^{\prime}\right)^{n}+\operatorname{rem}\left(a^{\prime}, b^{\prime}, n\right)$ where a^{\prime}, b^{\prime}, and c^{\prime} do not form a Pythagorean Triple.

For the Pythagorean Triple, $c=a+b$ means that $c^{2}=a^{2}+b^{2}$ where the left and right hand sides of the equality refer to the same unique integer without interaction between a and b, which for positive integers, can only be accomplished by adding and subtracting an imaginary interaction in the case of $\left.c^{2}=a^{2}+b^{2}=a^{2}+b^{2}+i a b-i a b\right)$; otherwise, $c^{\prime 2}=\left(a^{\prime}+b^{\prime}\right)^{2}=a^{\prime 2}+b^{\prime 2}+2 a^{\prime} b^{\prime}$, which now includes the interactions. The latter equation can then be easily extended to the Binomial Expansion $\left(c^{\prime}\right)^{n}=\left(a^{\prime}\right)^{n}+\left(b^{\prime}\right)^{n}+\operatorname{rem}\left(a^{\prime}, b^{\prime}, n\right)$, where c^{\prime} cannot be an integer, since $\operatorname{rem}\left(a^{\prime}, b^{\prime}, n\right)>0$ for positive integers, thus proving Fermat's Theorem.

In the case of General Relativity, the Binomial Theorem means that for a linear change in the value of c, the equation $\left(\psi^{\prime}\right)^{n}=\left(\gamma^{\prime}\right)^{n}+\left(\beta^{\prime}\right)^{n}+\operatorname{rem}(\gamma, \beta, n)$ implies that ψ^{\prime} cannot be an integer (even in the case of $n=2$ for $\left(\psi^{\prime}\right)^{2}=\left(\gamma^{\prime}\right)^{2}+\left(\beta^{\prime}\right)^{2}+2 \gamma^{\prime} \beta^{\prime}$ if there is an interaction between γ^{\prime} and β^{\prime}

If γ represents the energy due to electromagnetism and β^{\prime} represents an interaction due to gravity, the equation becomes $\left(\psi^{\prime}\right)^{2}=(\gamma)^{2}+\left(\beta^{\prime}\right)^{2}+2 \gamma \beta^{\prime}$ where the components $2 \gamma \beta^{\prime}$ are the twodimensional components of "gravitational" interaction. If β^{\prime} represents a change in c, then this "gravitation" refers to "light-on-light" interaction - in QFT, a change in the value of Planck's constant).

In any case, for a linear change in c, for powers of n, the interaction elements in $\operatorname{rem}\left(\gamma, b^{\prime}, n\right)$ ensure that ψ^{\prime} cannot be an integer, and correspond to the elements of the Jacobian of the metric tensor in the General Theory of Relativity, where γ represents electromagnetism at the "zero point" energy in the parking lot on earth at a given value of c ("temperature"), and β^{\prime} refers to a change in temperature, whatever the interpretation (nightfall, gravity, observed non-circular orbit around the Sun, etc.).

In particular, the energy of the metric tensor cannot be an integer if there are interactions between its basis vectors for $n \geq 2$

There is much more to this story, but I don't have space to write it here... ©

